Differentiable simulation combines physics-based simulation with automatic differentiation to solve inverse problems.

Instead of:

  • Forward Problem: Given parameters → predict observations
  • Traditional Inverse: Trial-and-error parameter search

We use:

  • Differentiable Simulation: Compute gradients through simulation → gradient-based optimization
Key insight:

If we can compute \( \frac{\partial \text{simulation}}{\partial \text{parameters}} \), we can use gradient descent to find optimal parameters.

 
©  |   Cornell University    |   Center for Advanced Computing    |   Copyright Statement    |   Access Statement
CVW material development is supported by NSF OAC awards 1854828, 2321040, 2323116 (UT Austin) and 2005506 (Indiana University)