DeepONet (Deep Operator Network) is the practical implementation of the Operator Universal Approximation Theorem.

Core Architecture

\[ \mathcal{G}_\theta(u)(y) = \sum_{k=1}^p b_k(u) \cdot t_k(y) + b_0 \]

where:

  • Branch network: \( b_k(u) = \mathcal{B}_k([u(x_1), u(x_2), \ldots, u(x_m)]) \)
  • Trunk network: \( t_k(y) = \mathcal{T}_k(y) \)
  • \( p \): Number of basis functions (typically 50-200)
  • \( b_0 \): Bias term

Training Data Structure

Input-output pairs: \( (u^{(i)}, y^{(j)}, \mathcal{G}(u^{(i)})(y^{(j)})) \)

  • \( N \) input functions: \( \{u^{(i)}\}_{i=1}^N \)
  • Each function sampled at \( m \) sensors: \( \{u^{(i)}(x_j)\}_{j=1}^m \)
  • Corresponding outputs at query points: \( \{\mathcal{G}(u^{(i)})(y_k)\} \)

Loss Function

\[ \mathcal{L}(\theta) = \frac{1}{N \cdot P} \sum_{i=1}^N \sum_{k=1}^P \left|\mathcal{G}_\theta(u^{(i)})(y_k) - \mathcal{G}(u^{(i)})(y_k)\right|^2 \]

Key Advantages

  1. Resolution independence: Train on one grid, evaluate on any grid
  2. Fast evaluation: Once trained, instant prediction (no iterative solving)
  3. Generalization: Works for new functions not seen during training
  4. Physical consistency: Learns the underlying operator
 
©  |   Cornell University    |   Center for Advanced Computing    |   Copyright Statement    |   Access Statement
CVW material development is supported by NSF OAC awards 1854828, 2321040, 2323116 (UT Austin) and 2005506 (Indiana University)