Problem Setup: 1D Poisson Equation
Mathematical Formulation
We want to learn the solution operator \( \mathcal{G} \) that maps source functions \( f(x) \) to solutions \( u(x) \):
\[ \mathcal{G}[f] = u \]
where \( u(x) \) satisfies:
- PDE: \( \frac{d^2u}{dx^2} = -f(x) \) for \( x \in [0,1] \)
- Boundary conditions: \( u(0) = 0 \), \( u(1) = 0 \)
Physics-Informed Loss Components
- Data Loss: \( \mathcal{L}_{data} = \frac{1}{N} \sum_{i=1}^N \|u_{pred}^{(i)} - u_{true}^{(i)}\|^2 \)
- Physics Loss: \( \mathcal{L}_{physics} = \frac{1}{N} \sum_{i=1}^N \left\|\frac{d^2u_{pred}^{(i)}}{dx^2} + f^{(i)}\right\|^2 \)
- Boundary Loss: \( \mathcal{L}_{boundary} = \frac{1}{N} \sum_{i=1}^N \left[|u_{pred}^{(i)}(0)|^2 + |u_{pred}^{(i)}(1)|^2\right] \)
- Total Loss: \( \mathcal{L} = \mathcal{L}_{data} + \lambda_{physics} \mathcal{L}_{physics} + \lambda_{boundary} \mathcal{L}_{boundary} \)
©
|
Cornell University
|
Center for Advanced Computing
|
Copyright Statement
|
Access Statement
CVW material development is supported by NSF OAC awards 1854828, 2321040, 2323116 (UT Austin) and 2005506 (Indiana University)
CVW material development is supported by NSF OAC awards 1854828, 2321040, 2323116 (UT Austin) and 2005506 (Indiana University)