The Breakthrough Theorem

Just as the Universal Approximation Theorem tells us neural networks can approximate functions, there's a remarkable extension:

Theorem (Chen & Chen, 1995): Neural networks can approximate operators that map functions to functions!

Mathematical Statement: For any continuous operator \( \mathcal{G}: V \subset C(K_1) \rightarrow C(K_2) \) and \( \epsilon > 0 \), there exist constants such that:

\[ \left|\mathcal{G}(u)(y) - \sum_{k=1}^p \underbrace{\sum_{i=1}^n c_i^k \sigma\left(\sum_{j=1}^m \xi_{ij}^k u(x_j) + \theta_i^k\right)}_{\text{Branch Network}} \underbrace{\sigma(w_k \cdot y + \zeta_k)}_{\text{Trunk Network}}\right| < \epsilon \]

Decoding the Theorem

This looks complex, but the insight is beautiful:

  1. Branch Network: Processes function \( u \) sampled at sensor points \( \{x_j\} \)
  2. Trunk Network: Processes output coordinates \( y \)
  3. Combination: Multiply branch and trunk outputs, then sum
Key insight:

Any operator can be written as:

\[ \mathcal{G}(u)(y) \approx \sum_{k=1}^p b_k(u) \cdot t_k(y) \]

where \( b_k \) depends only on the input function and \( t_k \) depends only on the output location!

 
©  |   Cornell University    |   Center for Advanced Computing    |   Copyright Statement    |   Access Statement
CVW material development is supported by NSF OAC awards 1854828, 2321040, 2323116 (UT Austin) and 2005506 (Indiana University)