Stage 2: The PINN Approach to Inverse Problems
The Key Insight:
Traditional inverse methods:
- Iterate between parameter guessing and forward solving
- Computationally expensive
- Prone to local minima
PINN approach:
- Treat unknown parameters as additional trainable variables
- Optimize network weights AND physical parameters simultaneously
- Use physics as regularization
The PINN Inverse Framework
For our heat equation problem, we have:
Unknowns to learn:
- \( \hat{T}_\theta(x) \) - neural network approximating temperature
- \( \hat{\kappa} \) - estimated thermal diffusivity (scalar parameter)
Loss function components:
\[ \mathcal{L}_{\text{total}}(\theta, \hat{\kappa}) = w_1\mathcal{L}_{\text{data}} + w_2\mathcal{L}_{\text{PDE}} + w_3\mathcal{L}_{\text{BC}} \]
where:
Data Loss: \( \mathcal{L}_{\text{data}} = \frac{1}{N_d}\sum_{i=1}^{N_d}|\hat{T}_\theta(x_i) - T_i|^2 \)
Physics Loss: \( \mathcal{L}_{\text{PDE}} = \frac{1}{N_f}\sum_{j=1}^{N_f}\left|-\hat{\kappa}\frac{d^2\hat{T}_\theta}{dx^2}(x_j) - f(x_j)\right|^2 \)
Boundary Loss: \( \mathcal{L}_{\text{BC}} = |\hat{T}_\theta(0) - T_0|^2 + |\hat{T}_\theta(1) - T_1|^2 \)
Why This Works
- Simultaneous optimization: Both \( \theta \) and \( \hat{\kappa} \) are updated together
- Physics regularization: The PDE constraint guides parameter estimation
- Data efficiency: Physics fills gaps between sparse measurements
- Robustness: Physics constraints filter noise in data
©
|
Cornell University
|
Center for Advanced Computing
|
Copyright Statement
|
Access Statement
CVW material development is supported by NSF OAC awards 1854828, 2321040, 2323116 (UT Austin) and 2005506 (Indiana University)
CVW material development is supported by NSF OAC awards 1854828, 2321040, 2323116 (UT Austin) and 2005506 (Indiana University)