Now the real work begins! Let's implement a Physics-Informed Neural Network step by step.

Step 1: Physics Loss Function

The heart of PINN is computing the physics residual using automatic differentiation:

Step 2: Complete PINN Training Loop

Key Components:

  1. Data loss: Fit the sparse measurements
  2. Physics loss: Satisfy the differential equation
  3. Collocation points: Where we enforce physics (not necessarily data points)
  4. Balance parameter \( \lambda \): Controls the trade-off

Step 3: Train the PINN

The moment of truth! Let's train the PINN and see if it can learn both the data and the physics:

 
©  |   Cornell University    |   Center for Advanced Computing    |   Copyright Statement    |   Access Statement
CVW material development is supported by NSF OAC awards 1854828, 2321040, 2323116 (UT Austin) and 2005506 (Indiana University)