Direct Comparison: Standard NN vs PINN

What we expect to see:

  • Standard NN: Fits data points but fails between them
  • PINN: Fits data points AND follows physics everywhere

Phase Portrait Analysis: The Ultimate Physics Test

Physical Insight:

For a harmonic oscillator, the phase portrait (velocity vs displacement) reveals the underlying dynamics. Real oscillators trace smooth spirals in phase space as energy dissipates.

Critical Test: Can our neural networks capture this fundamental physical behavior?

Deep Dive: Derivative Analysis

Critical Test: Can the PINN learn physically consistent derivatives?

Since we enforce the ODE through derivatives, the PINN should naturally learn correct \( \frac{du}{dt} \) and \( \frac{d^2u}{dt^2} \).

 
©  |   Cornell University    |   Center for Advanced Computing    |   Copyright Statement    |   Access Statement
CVW material development is supported by NSF OAC awards 1854828, 2321040, 2323116 (UT Austin) and 2005506 (Indiana University)